If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-20x-40=0
a = 9; b = -20; c = -40;
Δ = b2-4ac
Δ = -202-4·9·(-40)
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{115}}{2*9}=\frac{20-4\sqrt{115}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{115}}{2*9}=\frac{20+4\sqrt{115}}{18} $
| 9x^2-20x+40=0 | | 6+2u=4u | | 2x-9=x+5=15 | | 20x=12x=16 | | (2x-3)^2=4x-6(2x−3) | | u+30=60u | | f+1/4 =−7/2 | | 18=9(k-95) | | 39.2-x=2.9 | | 7x-4=2x÷11 | | c/9+27=35 | | 2(3x-1)-4(3x-3)=17 | | x^2-7=x-6x-7 | | x^2-7=x@-6x-7 | | 121/x=x/81 | | (180)=((4x+14)+(8x+10)) | | 6x-5/2=2x=6 | | x+1/3=-4 | | 7/8=1/4=p | | (6k+12)+9=9 | | 4(x-3)=14x | | -6(w-4+8w=2(w+9) | | (180)=((2x+36)+(7x-9)) | | 4x^2+36=72 | | 9(k-4)-7k=32-2(k+) | | 120=180(n-2) | | 69x-10=30 | | 6/5v=42 | | 5x+25=8+ | | -4x+9=-37 | | -x^2-4x;x=-3 | | x+16=5x=-11 |